Consider this model: xi = ax0 + ei, i = 1, …, 4 and x0 = e0. All terms e0, …, e3 are independent and N(0, 1) distributed. Let e = (e0, …, e3) and x = (x0, …x3). Isolating error terms gives that e = L1x where L1 has the form
## {{ 1, 0, 0, 0},
## {-a, 1, 0, 0},
## {-a, 0, 1, 0},
## {-a, 0, 0, 1}}
If error terms have variance 1 then Var(e) = LVar(x)L′ so the covariance matrix is V1 = Var(x) = L−(L−)′ while the concentration matrix (the inverse covariances matrix) is K = L′L.
Slightly more elaborate:
## {{ 1, 0, 0, 0},
## {-a1, 1, 0, 0},
## {-a2, 0, 1, 0},
## {-a3, 0, 0, 1}}
## {{w1, 0, 0, 0},
## { 0, w2, 0, 0},
## { 0, 0, w2, 0},
## { 0, 0, 0, w2}}