--- title: "The structure of the concentration and covariance matrix in a naive Bayes model" author: "Mikkel Meyer Andersen and Søren Højsgaard" date: "`r Sys.Date()`" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{The structure of the concentration and covariance matrix in a naive Bayes model} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r setup, include=FALSE} knitr::opts_chunk$set(echo = TRUE) ``` ```{r, message=FALSE} library(Ryacas) ``` ## Naive Bayes model Consider this model: $$ x_i = a x_0 + e_i, \quad i=1, \dots, 4 $$ and $x_0=e_0$. All terms $e_0, \dots, e_3$ are independent and $N(0,1)$ distributed. Let $e=(e_0, \dots, e_3)$ and $x=(x_0, \dots x_3)$. Isolating error terms gives that $$ e = L_1 x $$ where $L_1$ has the form ```{r} L1chr <- diag(4) L1chr[2:4, 1] <- "-a" L1 <- ysym(L1chr) L1 ``` If error terms have variance $1$ then $\mathbf{Var}(e)=L \mathbf{Var}(x) L'$ so the covariance matrix is $V1=\mathbf{Var}(x) = L^- (L^-)'$ while the concentration matrix (the inverse covariances matrix) is $K=L' L$. ```{r} L1inv <- solve(L1) K1 <- t(L1) %*% L1 V1 <- L1inv %*% t(L1inv) ``` ```{r, results="asis"} cat( "\\begin{align} K_1 &= ", tex(K1), " \\\\ V_1 &= ", tex(V1), " \\end{align}", sep = "") ``` Slightly more elaborate: ```{r} L2chr <- diag(4) L2chr[2:4, 1] <- c("-a1", "-a2", "-a3") L2 <- ysym(L2chr) L2 Vechr <- diag(4) Vechr[cbind(1:4, 1:4)] <- c("w1", "w2", "w2", "w2") Ve <- ysym(Vechr) Ve ``` ```{r} L2inv <- solve(L2) K2 <- t(L2) %*% solve(Ve) %*% L2 V2 <- L2inv %*% Ve %*% t(L2inv) ``` ```{r, results="asis"} cat( "\\begin{align} K_2 &= ", tex(K2), " \\\\ V_2 &= ", tex(V2), " \\end{align}", sep = "") ```